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ABSTRACT- Enterprise network security management is a 
complex task of balancing security and usability, with trade-offs 
often necessary between the two. Past work has provided ways to 
identify intricate attack paths due to misconfiguration and 
vulnerabilities in an enterprise system, but little has been done  to 
address how to correct the security problems within the context of 
various other requirements such as usability, ease of access, and 
cost of countermeasures. This paper presents an approach based 
on Boolean Satisfiability Solving (SAT Solving) that can reason 
about attacks, usability requirements, cost of actions, etc. in a 
unified, logical framework. Preliminary results show that the 
approach is both effective and efficient.   
General Terms 
Boolean Satisfiability Problem (SAT), Computer Network 
Management, Computer Network Security, Risk Analysis, 
Security, Scalability 
 
 

1. INTRODUCTION 
In computer science, satisfiability (often written in all capitals 
or abbreviated SAT) is the problem of determining if the 
variables of a given Boolean formula can be assigned in such a 
way as to make the formula evaluate to TRUE. Equally 
important is to determine whether no such assignments exist, 
which would imply that the function expressed by the formula 
is identically FALSE for all possible variable assignments. In 
this latter case, we would say that the function is unsatisfiable; 
otherwise it is satisfiable. For example, the formula a AND b is 
satisfiable because one can find the values a = TRUE and 
b = TRUE, which make a AND b TRUE. To emphasize the 
binary nature of this problem, it is frequently referred to as 
Boolean or propositional satisfiability.SAT was the first known 
example of an NP-complete problem. That briefly means that 
there is no known algorithm that efficiently solves all instances 
of SAT, and it is generally believed (but not proven, see P 
versus NP problem) that no such algorithm can exist. Further, a 
wide range of other naturally occurring decision and 
optimization problems can be transformed into instances of 
SAT. A class of algorithms called SAT solvers can efficiently 
solve a large enough subset of SAT instances to be useful in 
various practical areas such as circuit design and automatic 
theorem proving, by solving SAT instances made by 
transforming problems that arise in those areas. Extending the 
capabilities of SAT solving algorithms is an ongoing area of 
progress. However, no current such methods can efficiently 
solve all SAT instances. 
To make things more complicated, requirements for usability 
are often at odds with those for security. Configuration 
management would be a trivial problem if one only needed to 

consider security requirements; simply shutting down the 
whole network would resolve any security issues. But 
configuration changes aimed at correcting security flaws must 
be made in a context-aware manner, carefully balancing the 
system’s security and usability. Existing works in enterprise 
network security analysis, such as MulVAL [19], [20], can 
identify all possible attack paths in an enterprise system and 
output them in a graph structure. This structure provides a good 
foundation for addressing how to automatically find the best 
way to correct the security problems presented in the analysis 
results. We have developed a systematic approach, shown in 
Figure1, to aid a human in confronting these difficulties. The 
current (problematic) network configuration settings are 

 
Fig. SAT-based configuration generation 

 
passed into the MulVAL toolkit, which produces a logical 
proof graph identifying all potential attack paths by which an 
attacker might exploit system resources. This proof graph is 
converted into a Boolean formula in conjunctive normal form 
that relates configuration settings and attacker actions with 
potential effects, such as an attacker being able to execute 
arbitrary code on a computer in the network. Security and 
usability requirements, provided by the human user, are also 
converted into conjunctive normal form and added to the 
Boolean formula, and this combined formula φ is processed by 
a SAT solver. 
A human user can further train the SAT solver as to the relative 
value of various system resources and usages.Working 
interactively, the human user is able to quickly identify and 
resolve network security issues without unknowingly lessening 
the system usability. As the tool is trained, the degree of 
automation should increase, producing sound and desirable 
reconfiguration suggestions with minimal human involvement. 
In this approach, we use two SAT solving techniques: 
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1) MinCostSAT can utilize user-provided discrete cost values, 
associated with changing a given configuration setting or 
allowing an attacker a given amount of access, to find a 
mitigation solution that minimizes the cost in terms of both 
security risk and usability impairment. 
2) By examining the unSAT core, a minimal set of 
configurations and policy requirements that conflict, wenarrow 
the complexity of a reconfiguration dilemma to a 
straightforward choice between options. Past policy decisions 
by the human user are placed in a partialorderlattice and used 
to further reduce the scope of the decisions presented to the 
user. 
By this approach, the human user is not expected to fully 
comprehend the effects, both good and bad, of all aspects of 
network configuration, but only to make decisions on the 

 
Fig. 2. A MulVAL proof graph 
 
Immediate relative value of specific instances of usability and 
security. In this way, we reduce an extremely complex problem 
to one of more manageable proportions, automating the 
verification of both security and usability policies while 
introducing a method by which conflicts can be quickly and 
verifiably resolved. 
 

II. MULVAL SECURITY ANALYZER 
We use the MulVAL tool suite [19], [20] for our 
work.MulVAL is a security analyzation tool that, given initial 
network configurations (machines, active services, inter-host 
reach ability, etc.) and a database of known vulnerabilities, can 
identify all potential attack paths by which an attacker can 
exploit the system. These attack paths are assembled in a 
logical proof graph, showing how potentially successful attacks 
into the network are enabled by initial attacks on  the outer 
edges. MulVAL’s reasoning engine is specified declaratively in 
Datalog [1], providing inherent soundness of the results as well 
as an efficient O(N2) running time [19]. 

 Figure 2 shows part of the proof graph for an example 
enterprise network we studied. The diamond-shaped nodes in 
the graph represent privileges an attacker can gain through the 
exploits depicted as the elliptical nodes. System configuration 
data are represented by the rectangular nodes, such as c1, c2, 
c3, c4, c5. These can be both administrator defined 
configuration settings, like host access permissions, and 
unintentional facts, such as an existing vulnerability in a 
specific application. The potential exploits - e1, e2, e3 - link the 
causality relationship between a privilege that an attacker can 
gain and the preconditions that make this possible. For 
example, node e1 could correspond to a remote buffer overflow 
attack on a service. It links the effect of the attack, p1 (which 
means the attacker can gain privilege on the victim machine), 
to pre-conditions for the attack, such as c1 (which could mean 
the existence of a buffer-overflow vulnerability in 
the service program), and p2 (which could mean the attacker’s 
ability to send a maliciously crafted packet to the vulnerable 
service). All the arcs coming out of an exploit node like e1 
form a logical AND relation, requiring all of its children to be 
true before this exploit can be used. The arcs coming out of a 
privilege node like p1 form a logical OR relation, in which 
multiple descendant nodes indicate alternative exploits by 
which an attacker can gain this privilege. 
Although we have chosen to build our implementation based 
on the MulVAL proof graph, our approach can be based easily 
on other, similar tools for the production of network attack 
graphs (or fault propagation models) [6], [7], [11]. 
1.1.1 2-satisfiability 
Main article: 2-satisfiability 
SAT is also easier if the number of literals in a clause is limited 
to 2, in which case the problem is called 2SAT. This problem 
can also be solved in polynomial time, and in fact is complete 
for the class NL. Similarly, if we limit the number of literals 
per clause to 2 and change the AND operations to XOR 
operations, the result is exclusive-or 2-satisfiability, a problem 
complete for SL = L. 
One of the most important restrictions of SAT is HORNSAT, 
where the formula is a conjunction of Horn clauses. This 
problem is solved by the polynomial-time Horn-satisfiability 
algorithm, and is in fact P-complete. It can be seen as P's 
version of the Boolean satisfiability problem. 
Provided that the complexity classes P and NP are not equal, 
none of these restrictions are NP-complete, unlike SAT. The 
assumption that P and NP are not equal is currently not proven. 
1.1.2 [Edit] 3-satisfiability 
3-satisfiability is a special case of k-satisfiability (k-SAT) or 
simply satisfiability (SAT), when each clause contains exactly 
k = 3 literals. It was one of Karp's 21 NP-complete problems. 
Here is an example, where ¬ indicates negation: 

 
E has two clauses (denoted by parentheses), four variables (x1, 
x2, x3, x4), and k=3 (three literals per clause). 
To solve this instance of the decision problem we must 
determine whether there is a truth value (TRUE or FALSE) we 
can assign to each of the variables (x1 through x4) such that the 
entire expression is TRUE. In this instance, there is such an 
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assignment (x1 = TRUE, x2 = TRUE, x3=TRUE, x4=TRUE), so 
the answer to this instance is YES. This is one of many 
possible assignments, with for instance, any set of assignments 
including x1 = TRUE being sufficient. If there were no such 
assignment(s), the answer would be NO. 
3-SAT is NP-complete and it is used as a starting point for 
proving that other problems are also NP-hard. This is done by 
polynomial-time reduction from 3-SAT to the other problem. 
An example of a problem where this method has been used is 
the Clique problem. 3-SAT can be further restricted to One-in-
three 3SAT, where we ask if exactly one of the literals in each 
clause is true, rather than at least one. This restriction remains 
NP-complete. 
1.1.3 There is a simple randomized algorithm due to Schöni 2-
satisfiability 
Main article: 2-satisfiability 
SAT is also easier if the number of literals in a clause is limited 
to 2, in which case the problem is called 2SAT. This problem 
can also be solved in polynomial time, and in fact is complete 
for the class NL. Similarly, if we limit the number of literals 
per clause to 2 and change the AND operations to XOR 
operations, the result is exclusive-or 2-satisfiability, a problem 
complete for SL = L. 
One of the most important restrictions of SAT is HORNSAT, 
where the formula is a conjunction of Horn clauses. This 
problem is solved by the polynomial-time Horn-satisfiability 
algorithm, and is in fact P-complete. It can be seen as P's 
version of the Boolean satisfiability problem. 
Provided that the complexity classes P and NP are not equal, 
none of these restrictions are NP-complete, unlike SAT. The 
assumption that P and NP are not equal is currently not proven. 
1.1.4 [edit] 3-satisfiability 
3-satisfiability is a special case of k-satisfiability (k-SAT) or 
simply satisfiability (SAT), when each clause contains exactly 
k = 3 literals. It was one of Karp's 21 NP-complete problems. 
Here is an example, where ¬ indicates negation: 

 
E has two clauses (denoted by parentheses), four variables (x1, 
x2, x3, x4), and k=3 (three literals per clause). 
To solve this instance of the decision problem we must 
determine whether there is a truth value (TRUE or FALSE) we 
can assign to each of the variables (x1 through x4) such that the 
entire expression is TRUE. In this instance, there is such an 
assignment (x1 = TRUE, x2 = TRUE, x3=TRUE, x4=TRUE), so 
the answer to this instance is YES. This is one of many 
possible assignments, with for instance, any set of assignments 
including x1 = TRUE being sufficient. If there were no such 
assignment(s), the answer would be NO. 
3-SAT is NP-complete and it is used as a starting point for 
proving that other problems are also NP-hard. This is done by 
polynomial-time reduction from 3-SAT to the other problem. 
An example of a problem where this method has been used is 
the Clique problem. 3-SAT can be further restricted to One-in-
three 3SAT, where we ask if exactly one of the literals in each 
clause is true, rather than at least one. This restriction remains 
NP-complete. 

There is a simple randomized algorithm due to Schöning 

(1999) that runs in time where n is the number of 
clauses and succeeds with high probability to correctly decide 
3-Sat. The exponential time hypothesis is that no algorithm can 

solve 3-Sat in time . 

 ng (1999) that runs in time where n is the number of 
clauses and succeeds with high probability to correctly decide 
3-Sat. The exponential time hypothesis is that no algorithm can 

solve 3-Sat in time . 
 

III. RECONFIGURATION USING SAT SOLVING 
Since any network misconfiguration is technically resolvable 
(if only by removing all inter-machine access), reconfiguration 
decisions must be made in consideration of the cost of the 
changes needed and of usability requirements. We have 
developed two approaches based on advanced SAT solving 
techniques that can automatically suggest optimal configuration 
changes to address the security problems presented in a proof 
graph. Our approaches allow a user to provide feedback to the 
SAT solver so that constraints on usability, cost of deployment, 
and potential damage due to successful attacks can all be 
optimized in a unified framework. 
 
A. Transforming proof graphs to Boolean formulas 
We first extract the causality relationships represented in a  
MulVAL proof graph and express them as a Boolean formula. 
This is best explained through an example. In the  dependency  
proof graph of Figure 2, the AND node e1 means that the 
remote exploit is successful, since all of its children nodes p2, 
c1, c2 are enabled, and the result of the exploit is that the 
attacker gains privilege p1. 
This can be expressed by the following formula, 
                     p2 Λ c1 Λ c2=» p1 
Or, equivalently, 
               ¬ p2 v ¬c1 v ¬c2 v p1 
We similarly convert the other exploit nodes to construct the 
Following formulae: 
e1 = ¬p2v ¬c1 v¬ c2 v p1 
e2 = ¬c2 v ¬c3 v¬c5 v p1 
e3 = ¬c4 v ¬c5 v p2 
Let φ = e1 Λ e2 Λ e3, then φ is a Boolean formula in 
conjunctive normal form (CNF) whose size is linear in the size 
of the proof graph1. φ encodes all the causality relationships 
between configuration data and potential attacker privileges 
shown in the proof graph. For example, if all of c1, c2, c3, c4, 
c5 are assigned the truth value T (as in the current 
configuration), then p1, p2 must be assigned T to make a 
satisfying assignment for φ. Therefore, if one wishes p1, p2 to 
be false (meaning an attacker can gain neither of these 
Privileges), at least some of c1, c2, c3, c4, c5 must be assigned   
F, meaning some of the   current configuration settings need to 
be changed. Let ψ = φΛ¬p1Λ¬p2; then seeking a satisfying 
assignment to ψ amounts to finding configuration settings that 
can prevent an attacker from gaining privileges p1, p2. 

Mekala Bhaskar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3672-3677

3674



Every variable representing a configuration setting will be 
assigned T (meaning that the setting is “enabled”) or F 
(“disabled”). 
Since every configuration setting is T (“enabled”) when the 
proof graph is constructed, removing or “disabling” 
that setting will negate the associated variable. For example, if 
c1 represents the existence of a software vulnerability on the 
web server, the negation of that node means patching the 
vulnerability; if c5 represents a reach ability relationship 
between the Internet and the VPN server, disabling that node 
means blocking that access. If we feed ψ to a SAT solver, we 
can get a satisfying assignment by simply disabling all 
the configuration nodes c1, c2, c3, c4, c5. This is certainly not 
an optimal solution; we need a secure configuration that 
maintains basic network usability. A careful observation of the 
proof graph shows that by disabling c5 without altering c1, c2, 
c3, c4, we can prevent all 
the attack paths in the system, but we must consider the effects 
of this decision. It is not necessarily the case that a minimal 
number of system changes represent the optimal 
Reconfiguration. Suppose again that c5 represents accessibility 
of the VPN server from the Internet. Removing this access 
would certainly block an attacker, but it would also prevent 
legitimate users from remotely logging into the network via the 
VPN server. This type of trade-off between security and 
usability is often present in system configuration  management. 
In configuring an enterprise network, we want to compare not 
only the potential cost in damage from a successful attack, but 
also the potential losses arising from decreased network 
usability. If the cost of completely securing the network against 
attackers is much higher than the potential losses from attacks, 
it could be a better solution simply to acknowledge and tolerate 
the possibility that an attacker can obtain some minor 
privileges on the enterprise system. In this example, we may 
decide that an optimal solution would not force p2 to be false, 
so we can redefine our goal to be ψ = φ  Λ¬p1.We must now 
re-examine the proof graph in light of this new ψ. Suppose that 
c1 and c3 represent vulnerabilities present in system 
applications. By patching these two vulnerabilities, we can 
disable these two nodes and thus eliminate all attack paths that 
could enable an attacker to gain privilege p1.This configuration 
would negate p1 without violating φ, so it satisfies ψ.Though it 
is relatively easy to examine and reconfigure this small 
example, a reliable and automated approach is needed to 
address security concerns in real-size enterprise networks. 
We now introduce two applications of SAT solving to resolve 
network misconfigurations by balancing costs and potential 
damage. 
B. MinCostSAT 
MinCostSAT is a SAT problem which minimizes the cost of 
the satisfying assignment [9]. Mathematically, given a Boolean 
formula ψ with n variables x1, x2, . . . , xn, each with cost ci ≥0, 
find a truth-value assignment X Є {0, 1}n such that Satisfies ψ 
and minimizes 
      n 
C =∑ cixi   
       I=1 

Where xi Є {0, 1} and 1 ≤ i ≤ n. 
MinCostSAT has been thoroughly studied by the SAT solving 
community [2], [5], [9], [14]. Although the problem is NP-
hard, modern SAT solvers have been very successful in 
practice, being able to handle Boolean formulas with millions 
of variables and clauses in seconds. We use the MinCostChaff  
solver [5] which is a MinCostSAT solver based on the zChaff 
SAT solver [13]. 
The MinCostSAT problem minimizes the cost for variables that 
are assigned T . This matches the semantics for privilege 
variables, whose T assignment means an attacker can gain 
some privilege and thereby cause some damage. But for 
configuration variables, the cost would be incurred when it is 
disabled, or assigned F. To model this correctly, we first 
transform our formula to use the negation of a Boolean variable 
to represent each configuration node. This way, when the 
variable is assigned T , it means that the corresponding 
configuration node is disabled, which will incur some cost. 
With the expressiveness of Boolean formulas and the power of 
a SAT solver, a system administrator can ask questions like 
“what is the best way to reconfigure my system if I want to 
guarantee that the file server will not be compromised?” This 
can be done by forcing the Boolean variable x that corresponds 
to the privilege ExecCode (fileServer, someUser) to be false 
(i.e., conjoining � x to the original formula). He can also ask 
questions like “Can I make the file server secure while 
allowing the web server to be accessed from the Internet?” We 
have implemented mechanisms that allow a system 
administrator to specify those additional constraints for the 
various queries he would like to conduct. Those constraints can 
be straightforwardly specified in Datalog and automatically 
transformed into additional clauses in the Boolean formula to 
be solved by the MinCostSAT solver. This kind of constraint 
can also become a part of the configuration policy. For 
example, a user might decide that the web server must be 
accessible from the Internet. If the variable representing this 
Configuration setting is forced true in the Boolean formula; 
MinCostSAT will never return a suggested reconfiguration that 
requires this access to be removed. Similarly, potential attacker 
privileges can be forced to be always false; for example, a user 
might decide that an attacker should never access the data 
historian, and so this access could be forced to be false, 
meaning that  MinCostSAT will never allow it to be true. This 
effect could also be simulated by assigning unrealistically high 
costs for those variables; however, forcing them to be true or 
false will ensure that no reconfiguration suggestion will reverse 
this decision. 
C. Scalability 
To test the scalability of our approach, we constructed 
simulated enterprise networks with two different sizes 
I: 100 host machines, evenly divided in 10 subnet 
II: 250 host machines, evenly divided in 25 subnets 
 We also tested using two different cost functions: 
A: All clauses were assigned an equal cost. The effect of this 
cost policy would simply be to minimize the number of 
configuration changes made plus the number of compromised 
machines. 
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B:Clauses represent in code-execution privileges on a machine 
were assigned costs based on the machine’s position in the 
network. The effect of this cost policy would be to have 
increasingly high costs for penetrations deeper into the 
network. The costs for blocking network access 
to hosts or disabling network services were significant. All 
other changes had equal, low cost. 
The test was conducted on a Linux machine with Opteron 
Dual-Core 2214 2.2 GHz CPU, with 16GB memory, and 
running Gentoo Linux with kernel version 2.6.18-hardenedr6 
Sz Cfn #variables #clauses time(sec) 
I A 11,853 12,053 0.11 
I B 11,853 12,053 0.21 
II A 70,803 72,553 3.03 
II B 70,803 72,553 6.49 
The simulated networks on which we performed the above tests 
were certainly not representative of realistic enterprise network 
settings, but the performance indicates that modern SAT 
solvers are likely to be powerful enough to handle the 
configuration management problem we describe in this paper. 
Also, a highly correlated network configuration may produce 
nontrivial runtimes. A full-scope understanding of the 
scalability of this approach will require extensive real-world 
testing, currently planned for future work. 
 
D. Iterative UNSAT Core Elimination 
We now introduce the second SAT solving technique, in which 
the concept of UNSAT core is leveraged for the identification 
and resolution of conflicts in the network policies. 
Definition 1. An unsatisfiable core is a subset of the original 
CNF clauses that is unsatisfiable in itself [4].When a SAT 
solver finds a set of clauses to be unsatisfiable,a byproduct of 
this decision is the UNSAT core. Logically, given an 
unsatisfiable Boolean formula ψ in CNF, the UNSAT core μ = 
u1, u2, . . . , um is a subset of all the clauses in ψ (shorthanded 
μ � ψ hereafter) such that ψ will remain unsatisfiable while μ 
remains unchanged. We generate the UNSAT core using the 
zChaff SAT solver’s zcore function [13].In this approach we 
will not rely on cost assignments, but rather on the balance 
between security and usability policies 
 
Returning to the example from section II, let security policy δ = 
-p1; then our security policy specifies that an attacker should 
not be able to gain privilege p1. Let usability policies γ1 = c1 ^ 
c2 ^ c4 ^ c5 and γ2 = c2^ c3 ^ c5; then our usability policies 
together specify that all current configuration settings are 
necessary to maintain basic network usefulness. So ψ = φ ^ δ ^ 
γ1 ^ γ2. 
 
Utilizing the UNSAT core in this way precludes the need to 
assign costs to each network configuration setting beforehand, 
as is required for the MinCostSAT solution. So long as security 
and usability policies do not conflict, the user is not asked to 
decide between any two policies or attempt to assign discrete 
values to them. These decisions are only faced when an actual 
conflict has arisen, so the human user makes only necessary 
choices about system resource valuations. 

Partial-order lattice: To further reduce the breadth of decisions 
faced by a human user, we have implemented a partial-order 
lattice to store the relative priorities between pairs of policies. 
Each time the human user is presented with the causes of an 
unclassifiablegy conflict and selects one or more of those 
constraints to be relaxed, this decision is recorded in the 
partial-order lattice to be used as a reference for deciding future 
conflicts. We assume that the constraints. That the user allows 
being relaxed has a lower overall priority than any clauses that 
were not relaxed, and this ordering is recorded in the lattice. In 
future decisions where two  conflicting constraints appear for 
which an ordering is already known, the constraint with higher 
priority will not be offered to the user as a possibility for 
relaxation. In this way, conflicts 
are reduced to comparisons between configuration settings or 
policy requirements for which relative priorities are not known. 
Once known, these decisions need not be faced again 
 

CONCLUSION 
We have introduced a methodology where the system security 
requirements can be converted to a Boolean formula and, using 
SAT solving techniques, one can quickly correct   
Misconfigurations that may lead to multi-step, multi-host 
attacks in enterprise networks. This approach can account for 
both security and usability requirements, through the adoption 
of modern SAT solving techniques such as MinCostSAT and 
UNSAT core elimination. We presented a unified framework in 
which the competing requirements can be specified in a 
Boolean formula and an optimal solution can be searched for 
that provides a reasonable trade-off between the various 
requirements for practical security administration. Preliminary   
Experimental results on both realistic and synthesized 
enterprise network settings indicate that the SAT solving 
approach is effective and scalable. 
Definition 2. 
Let be Boolean variables. We define an literal to 
be either or , for . We define a clause to be 
the joining of some number of literals, by a , the "logical or", 
surrounded by parenthesis. That is, a clause is 

, with a literal, for . Finally, 
let us define a formula as joining some number of clauses 
with , the "logical and". That is, a formula is , 
where is a clause, for . 
We can now define the boolean satisfiability problem: Given 

a formula with boolean variables , 

decide if there exists a function , 

such that when one replaces by in , the resulting 
boolean sentence is logically true. We note this 

as , and say that is satisfiable. 
This may seem like it applies only to a very restricted subset of 
Boolean propositions; however, any Boolean proposition can 
be reduced to one of these formulas. This is the conjunctive 
normal form of a Boolean proposition. Thus, for any Boolean 
proposition you have, there exist 
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